

GLOBAL DISPLAY SOLUTIONS

Optical Bonding Technology

Wash-Out VS Bonded

Display enhancement for <u>added</u> value

- Improved optical performance
- Allows sunlight readability
- Improved mechanical shock and vibration protection
- Hugely improved display value in harsh/uncontrolled environments

- Modern TFT LCD's have vastly improved specifications.
- 'Industrial' type LCD's often offer even higher performance (for an increased cost).
- Brightness is regularly 300 400cd/m2
- Contrast 400:1+
- 'Transflective' types are available for improved sunlight readability

- Use of a Touchscreen, privacy filter, or any protective surface will still have extremely detrimental effect on display performance.
- Current off the shelf technologies cannot meet true
 'Sunlight Readable' performance for outdoor applications
- Bonding is not an alternative to these advances, it
 <u>extends</u> the performance of the underlying display

- High Ambient lighting (Sunlight) conditions
- Any situation where a Touchscreen is used
- Any situation where a Protective cover is used
- If the display has to be IP or NEMA rated (for protection from water, dust, etc)
- If the LCD is vulnerable to mechanical shock or vibration
- Where the display is operating at the high end of it's market

Outdoor

Avionics

Marine

GPS

In vehicle computers

Optical Improvements

$$CR = rac{L_{White}}{L_{Black}}$$

- CR = Contrast Ratio (typically >200:1)
- As referred to in LCD panel manufacturer spec sheets
- Really only applies to measurements taken in a dark room with no ambient lighting (reflections).
- Often does not take account of the angular distribution of light from an LCD panel

Real world situation – Lumination Vs Illumination

Surface reflections interfere with the displays modulated light output to reduce the visible contrast.

LCD

- Lumination depends on the panel brightness
- •remember a 400cd/m2 panel is only that bright with a fully white screen
- Reflected noise can reach1500cd/m2 in direct sunlight

- By raising the black level as well as the white the contrast ratio (W/B) will be reduced
- Less 'dynamic range' means less detail in images and text is harder to read.
- Addition of 'white' light de-saturates the colours making the image appear washed out
- Bright spots cause 'glare'. The visual system cannot properly adjust to see the displayed image

- Visual perception is a very complex process. A combination of physical detection and mental processing that feeds back to affect the physical detection.
- Example Lateral Inhibition

- Shows that the luminance or 'brightness' alone is not very useful information for interpreting an image
- The visual system tunes it out to focus on contrast between different elements in the image
- The visual system only 'sees' the difference between luminance levels
- Higher brightness displays usually offer a better looking picture in high ambient light because of improved visible contrast

High Brightness LCD panel

+ Sunlight

$$CR = \frac{L_W}{L_B} = \frac{450 + 500}{1 + 500} = 1.9$$

Reflection = 5% x 10,000cd/m2 incident light

What about if a front surface is required?

 A front glass will have a large negative impact on the visible contrast

Includes Touchscreens, Anti-vandal glass, Privacy filter, moisture protection etc.

•Every interface (glass to air and air to glass) will lead to a reflection of about 5% of the light

Now virtually no contrast in direct sunlight

$$CR = \frac{L_w}{L_B} = \frac{450 + 3 \times 500}{1 + 3 \times 500} = 1.299$$

Touchscreen or cover glass

 AR coating will reduce the reflected energy to between 0.4 and 1%

Touchscreen or cover glass + AR

•An improvement but still nowhere near the darkroom performance

$$CR = \frac{450 + 2 \times 500 + 50}{1 + 2 \times 500 + 50} = 1.408$$

An additional layer of 'bonding material' effectively removes two of the reflective surfaces

Now that the two additional reflections are removed the AR coating becomes far more effective

Bonding

Material

Touchscreen or cover glass

 $CR = \frac{450 + 50}{1 + 50} = 9.8$

A real sunlight readable display

'Active' brightness enhancement

- Causes Thermal issues (Clearing point of LCD panel)
- Increased power consumption
- Raises black level as well as White (inefficient)

Simple AR coating (air gap or laminated)

- Reduces surface reflections but does not give 'sunlight readability'
- Air gap can lead to greenhouse effect with solar loading (thermal issues)
- Inefficient use of AR treatment

Best current solution is a combination of all three. Addition of more backlighting power and bonding of optically enhanced glass

$$CR = \frac{L_W}{L_B} = \frac{1500}{4} = 375$$

+ Sunlight

$$CR = \frac{L_W}{L_B} = \frac{1500 + 1500}{1500 + 4} = 1.99$$

Ruggedization

- Allows for fully sealed and mechanically toughened front surface with no optical degradation
- Increased resistance to shock and vibration for the fragile LCD glass component – due to bonding material itself.
- Removal of any risk of dust behind the front cover/touchscreen etc.
- Removal of screen front greenhouse effect
- Removal of the front screen condensation issue for sealed front covers
- Removal of parallax effect can enable new designs

- Bonding material is jelly like, a perfect shock absorber
- Dampens any movement of the panel

- Dust and dirt
- Impair optical performance
- May require difficult cleaning operation even the removal of the touchscreen / front cover
- Screen front condensation during temperature changes